Problem-Parameter-Free Federated Learning

Published: 22 Jan 2025, Last Modified: 27 Feb 2025ICLR 2025 OralEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Adaptive federated learning, problem-parameter free, arbitrary data heterogeneity, adaptive stepsize
Abstract: Federated learning (FL) has garnered significant attention from academia and industry in recent years due to its advantages in data privacy, scalability, and communication efficiency. However, current FL algorithms face a critical limitation: their performance heavily depends on meticulously tuned hyperparameters, particularly the learning rate or stepsize. This manual tuning process is challenging in federated settings due to data heterogeneity and limited accessibility of local datasets. Consequently, the reliance on problem-specific parameters hinders the widespread adoption of FL and potentially compromises its performance in dynamic or diverse environments. To address this issue, we introduce PAdaMFed, a novel algorithm for nonconvex FL that carefully combines adaptive stepsize and momentum techniques. PAdaMFed offers two key advantages: 1) it operates autonomously without relying on problem-specific parameters; and 2) it manages data heterogeneity and partial participation without requiring heterogeneity bounds. Despite these benefits, PAdaMFed provides several strong theoretical guarantees: 1) It achieves state-of-the-art convergence rates with a sample complexity of $\mathcal{O}(\epsilon^{-4})$ and communication complexity of $\mathcal{O}(\epsilon^{-3})$ to obtain an accuracy of $||\nabla f\left(\boldsymbol{\theta}\right)|| \leq \epsilon$, even using constant learning rates; 2) these complexities can be improved to the best-known $\mathcal{O}(\epsilon^{-3})$ for sampling and $\mathcal{O}(\epsilon^{-2})$ for communication when incorporating variance reduction; 3) it exhibits linear speedup with respect to the number of local update steps and participating clients at each global round. These attributes make PAdaMFed highly scalable and adaptable for various real-world FL applications. Extensive empirical evidence on both image classification and sentiment analysis tasks validates the efficacy of our approaches.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5729
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview