Keywords: information retrieval, generative retrieval, dense retrieval
TL;DR: We propose hierarchical corpus encoder, a document retriever that jointly learns a dense retriever and a document hierarchy.
Abstract: Generative retrieval employs sequence models for conditional generation of document IDs based on a query (DSI (Tay et al. (2022); NCI (Wang et al., 2022); inter alia). While this has led to improved performance in zero-shot retrieval, it is a challenge to support documents not seen during training. We identify the performance of generative retrieval lies in contrastive training between sibling nodes in a document hierarchy. This motivates our proposal, the _hierarchical corpus encoder_ (HCE), which can be supported by traditional dense encoders. Our experiments show that HCE achieves superior results than generative retrieval models under both unsupervised zero-shot and supervised settings, while also allowing the easy addition and removal of documents to the index.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2713
Loading