Constrained Robust Submodular PartitioningDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 SpotlightReaders: Everyone
Keywords: Submodular Optimization
TL;DR: We propose algorithms for the constrained robust submodular partitioning problem with theoretical guarantees.
Abstract: In the robust submodular partitioning problem, we aim to allocate a set of items into $m$ blocks, so that the evaluation of the minimum block according to a submodular function is maximized. Robust submodular partitioning promotes the diversity of every block in the partition. It has many applications in machine learning, e.g., partitioning data for distributed training so that the gradients computed on every block are consistent. We study an extension of the robust submodular partition problem with additional constraints (e.g., cardinality, multiple matroids, and/or knapsack) on every block. For example, when partitioning data for distributed training, we can add a constraint that the number of samples of each class is the same in each partition block, ensuring data balance. We present two classes of algorithms, i.e., Min-Block Greedy based algorithms (with an $\Omega(1/m)$ bound), and Round-Robin Greedy based algorithms (with a constant bound) and show that under various constraints, they still have good approximation guarantees. Interestingly, while normally the latter runs in only weakly polynomial time, we show that using the two together yields strongly polynomial running time while preserving the approximation guarantee. Lastly, we apply the algorithms on a real-world machine learning data partitioning problem showing good results.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Supplementary Material: pdf
Code: zip
10 Replies

Loading