Robust Temporal EnsemblingDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: learning with noise, robust task loss, consistency regularization
Abstract: Successful training of deep neural networks with noisy labels is an essential capability as most real-world datasets contain some amount of mislabeled data. Left unmitigated, label noise can sharply degrade typical supervised learning approaches. In this paper, we present robust temporal ensembling (RTE), a simple supervised learning approach which combines robust task loss, temporal pseudo-labeling, and a new ensemble consistency regularization term to achieve noise-robust learning. We demonstrate that RTE achieves state-of-the-art performance across the CIFAR-10, CIFAR-100, and ImageNet datasets, while forgoing the recent trend of label filtering/fixing. In particular, RTE achieves 93.64% accuracy on CIFAR-10 and 66.43% accuracy on CIFAR-100 under 80% label corruption, and achieves 74.79% accuracy on ImageNet under 40% corruption. These are substantial gains over previous state-of-the-art accuracies of 86.6%, 60.2%, and 71.31%, respectively, achieved using three distinct methods. Finally, we show that RTE retains competitive corruption robustness to unforeseen input noise using CIFAR-10-C, obtaining a mean corruption error (mCE) of 13.50% even in the presence of an 80% noise ratio, versus 26.9% mCE with standard methods on clean data.
One-sentence Summary: We present robust temporal ensembling (RTE), a state-of-the-art method for learning with noisy labels that combines robust task loss, temporal pseudo-labeling, and a new form of consistency regularization.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=51D_IRAyT0
12 Replies

Loading