Do We Need Language-Specific Fact-Checking Models? The Case of ChineseDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: This paper investigates the potential benefits of language-specific fact-checking models, focusing on the case of Chinese. We first demonstrate the limitations of translation-based methods and multilingual large language models (e.g., GPT-4), highlighting the need for language-specific systems. We further propose a Chinese fact-checking system that can better retrieve evidence from a document by incorporating context information. To better analyze token-level biases in different systems, we construct an adversarial dataset based on the CHEF dataset, where each instance has large word overlap with the original one but holds the opposite veracity label. Experimental results on the CHEF dataset and our adversarial dataset show that our proposed method outperforms translation-based methods and multilingual LLMs and is more robust toward biases, while there is still large room for improvement, emphasizing the importance of language-specific fact-checking systems.
Paper Type: short
Research Area: NLP Applications
Contribution Types: Model analysis & interpretability, Data analysis
Languages Studied: English, Chinese
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview