Can GNNs Learn Heuristic Information for Link Prediction?Download PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: link prediction, graph neural networks, heuristics
TL;DR: We study existing state-of-the-art GNN-based link prediction methods and show that these methods can hardly learn heuristic information. Our experiments also support our analysis.
Abstract: Graph Neural Networks (GNNs) have shown superior performance in Link Prediction (LP). Especially, SEAL and its successors address the LP problem by classifying the subgraphs extracted specifically for candidate links, gaining state-of-the-art results. Nevertheless, we question whether these methods can effectively learn the information equivalent to link heuristics such as Common Neighbors, Katz index, etc. (we refer to such information as heuristic information in this work). We show that link heuristics and GNNs capture different information. Link heuristics usually collect pair-specific information by counting the involved neighbors or paths between two nodes in a candidate link, while GNNs learn node-wise representations through a neighborhood aggregation algorithm in which two nodes in the candidate link do not pay special attention to each other. Our further analysis shows that SEAL-type methods only use a GNN to model the pair-specific subgraphs and also cannot effectively capture heuristic information. To verify our analysis, a straightforward way is to compare the LP performance between existing methods and a model that learns heuristic information independently of the GNN learning. To this end, we present a simple yet light framework ComHG by directly Combining the embeddings of link Heuristics and the representations produced by a GNN. Experiments on OGB LP benchmarks show that ComHG outperforms all top competitors by a large margin, empirically confirming our propositions. Our experimental study also indicates that the contributions of link heuristics and the GNN to LP are sensitive to the graph degree, where the former is powerful on sparse graphs while the latter becomes dominant on dense graphs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
13 Replies

Loading