Poisoning Generative Models to Promote Catastrophic ForgettingDownload PDF

Published: 01 Feb 2023, Last Modified: 13 Feb 2023Submitted to ICLR 2023Readers: Everyone
Keywords: poisoning attacks, backdoor attacks
Abstract: Generative models have grown into the workhorse of many state-of-the-art machine learning methods. However, their vulnerability under poisoning attacks has been largely understudied. In this work, we investigate this issue in the context of continual learning, where generative replayers are utilized to tackle catastrophic forgetting. By developing a novel customization of dirty-label input-aware backdoor to the online setting, our attacker manages to stealthily promote forgetting while retaining high accuracy at the current task and sustaining strong defenders. Our approach taps into an intriguing property of generative models, namely that they cannot well capture input-dependent triggers. Experiments on four standard datasets corroborate the poisoner’s effectiveness.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: General Machine Learning (ie none of the above)
TL;DR: We develop a novel poisoning attack on generative models to promotes catastrophic forgetting.
13 Replies

Loading