Investigating Pattern Neurons in Urban Time Series Forecasting

Published: 22 Jan 2025, Last Modified: 05 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: urban time series forecasting, neuron detection
Abstract: Urban time series forecasting is crucial for smart city development and is key to sustainable urban management. Although urban time series models (UTSMs) are effective in general forecasting, they often overlook low-frequency events, such as holidays and extreme weather, leading to degraded performance in practical applications. In this paper, we first investigate how UTSMs handle these infrequent patterns from a neural perspective. Based on our findings, we propose $\textbf{P}$attern $\textbf{N}$euron guided $\textbf{Train}$ing ($\texttt{PN-Train}$), a novel training method that features (i) a $\textit{perturbation-based detector}$ to identify neurons responsible for low-frequency patterns in UTSMs, and (ii) a $\textit{fine-tuning mechanism}$ that enhances these neurons without compromising representation learning on high-frequency patterns. Empirical results demonstrate that $\texttt{PN-Train}$ considerably improves forecasting accuracy for low-frequency events while maintaining high performance for high-frequency events. The code is available at https://github.com/cwang-nus/PN-Train.
Primary Area: learning on time series and dynamical systems
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4166
Loading