Keywords: offline reinforcement learning, natural language processing, dialogue, controlled generation
TL;DR: We propose a novel offline RL method, implicit language Q-learning (ILQL), for use on language models.
Abstract: Large language models distill broad knowledge from text corpora. However, they can be inconsistent when it comes to completing user specified tasks. This issue can be addressed by finetuning such models via supervised learning on curated datasets, or via reinforcement learning. In this work, we propose a novel offline RL method, implicit language Q-learning (ILQL), designed for use on language models, that combines both the flexible utility maximization framework of RL algorithms with the ability of supervised learning to leverage previously collected data, as well as its simplicity and stability. Our method employs a combination of value conservatism alongside an implicit dataset support constraint in learning value functions, which are then used to guide language model generations towards maximizing user-specified utility functions. In addition to empirically validating ILQL, we present a detailed empirical analysis of situations where offline RL can be useful in natural language generation settings, demonstrating how it can be a more effective utility optimizer than prior approaches for end-to-end dialogue, and how it can effectively optimize high variance reward functions based on subjective judgement, such as whether to label a comment as toxic or not.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Supplementary Material: zip
10 Replies
Loading