Keywords: conformal prediction, distribution shift, non-exchangeability
TL;DR: For conformal prediction under distribution shift, we bound of coverage gap by Wasserstein distance between calibration and test conformal scores, which is further decomposed and minimized based on impacts from covariate and concept shifts.
Abstract: Conformal prediction yields a prediction set with guaranteed $1-\alpha$ coverage of the true target under the i.i.d. assumption,
which can fail and lead to a gap between $1-\alpha$ and the actual coverage. Prior studies bound the gap using total variation distance, which cannot identify the gap changes under distribution shift at different $\alpha$, thus serving as a weak indicator of prediction set validity. Besides, existing methods are mostly limited to covariate shifts, while general joint distribution shifts are more common in practice but less researched. In response, we first propose a Wasserstein distance-based upper bound of the coverage gap and analyze the bound using probability measure pushforwards between the shifted joint data and conformal score distributions, enabling a separation of the effect of covariate and concept shifts over the coverage gap. We exploit the separation to design algorithms based on importance weighting and regularized representation learning (WR-CP) to reduce the Wasserstein bound with a finite-sample error bound. WR-CP achieves a controllable balance between conformal prediction accuracy and efficiency. Experiments on six datasets prove that WR-CP can reduce coverage gaps to 3.2% across different confidence levels and outputs prediction sets 37% smaller than the worst-case approach on average.
Supplementary Material: pdf
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4273
Loading