Efficient Differentiable Neural Architecture Search with Model ParallelismDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Neural Architecture Search, Model Parallel
Abstract: Neural architecture search (NAS) automatically designs effective network architectures. Differentiable NAS with supernets that encompass all potential architectures in a large graph cuts down search overhead to few GPU days or less. However, these algorithms consume massive GPU memory, which will restrain NAS from large batch sizes and large search spaces (e.g., more candidate operations, diverse cell structures, and large depth of supernets). In this paper, we present binary neural architecture search (NASB) with consecutive model parallel (CMP) to tackle the problem of insufficient GPU memory. CMP aggregates memory from multiple GPUs for supernets. It divides forward/backward phases into several sub-tasks and executes the same type of sub-tasks together to reduce waiting cycles. This approach improves the hardware utilization of model parallel, but it utilizes large GPU memory. NASB is proposed to reduce memory footprint, which excludes inactive operations from computation graphs and computes those operations on the fly for inactive architectural gradients in backward phases. Experiments show that NASB-CMP runs 1.2× faster than other model parallel approaches and outperforms state-of-the-art differentiable NAS. NASB can also save twice GPU memory more than PC-DARTS. Finally, we apply NASB-CMP to complicated supernet architectures. Although deep supernets with diverse cell structures do not improve NAS performance, NASB-CMP shows its potential to explore supernet architecture design in large search space.
One-sentence Summary: We scale up neural architecture search with consecutive model parallel, running 1.2x faster than using other model parallelism
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=QrF2MUxgzd
18 Replies

Loading