Implicit Bias of Per-sample Adam on Separable Data: Departure from the Full-batch Regime

Published: 22 Sept 2025, Last Modified: 01 Dec 2025NeurIPS 2025 WorkshopEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Adam, implicit bias, separable data, adaptive algorithms, mini-batch regimes
TL;DR: We characterize the implicit bias of mini-batch Adam on separable data, showing that it can deviate from the $\ell_\infty$-max-margin classifier, whereas Signum consistently preserves the $\ell_\infty$-bias for any batch size.
Abstract: Adam [Kingma & Ba, 2015] is the de facto optimizer in deep learning, yet its theoretical understanding remains limited. Prior analyses show that Adam favors solutions aligned with $\ell_\infty$-geometry, but these results are restricted to the full-batch regime. In this work, we study the implicit bias of incremental Adam (using one sample per step) for logistic regression on linearly separable data, and show that its bias can deviate from the full-batch behavior. As an extreme example, we construct datasets on which incremental Adam provably converges to the $\ell_2$-max-margin classifier, in contrast to the $\ell_\infty$-max-margin bias of full-batch Adam. For general datasets, we characterize its bias using a proxy algorithm for the $\beta_2 \to 1$ limit. This proxy maximizes a data-adaptive Mahalanobis-norm margin, whose associated covariance matrix is determined by a data-dependent dual fixed-point formulation. We further present concrete datasets where this bias reduces to the standard $\ell_2$- and $\ell_\infty$-max-margin classifiers. As a counterpoint, we prove that Signum [Bernstein et al., 2018] converges to the $\ell_\infty$-max-margin classifier for any batch size. Overall, our results highlight that the implicit bias of Adam crucially depends on both the batching scheme and the dataset, while Signum remains invariant.
Submission Number: 114
Loading