Abstract: The value of text classification's future research has encountered challenges and uncertainties, due to the extraordinary efficacy demonstrated by large language models (LLMs) across numerous downstream NLP tasks. In this era of open-ended language modeling, where task boundaries are gradually fading, an urgent question emerges: have we made significant progress in text classification with the full benefit of LLMs? To answer this question, we propose RGPT, an adaptive boosting framework tailored to produce a specialized text classification LLM by recurrently ensembling a pool of strong base learners. The base learners are constructed by adaptively adjusting the distribution of training samples and iteratively fine-tuning LLMs with them. Such base learners are then ensembled to be a specialized text classification LLM, by recurrently incorporating the historical predictions from the previous learners. Through a comprehensive empirical comparison, we show that RGPT significantly outperforms 8 SOTA PLMs and 7 SOTA LLMs on four benchmarks by 1.36% on average. Further evaluation experiments reveal a clear superiority of RGPT over average human classification performance.
Paper Type: long
Research Area: Sentiment Analysis, Stylistic Analysis, and Argument Mining
Contribution Types: Model analysis & interpretability, NLP engineering experiment, Publicly available software and/or pre-trained models
Languages Studied: English
0 Replies
Loading