Keywords: fundamental domain, linear regions, sampling, tropical geometry, symbolic computing
TL;DR: Tropical geometry provides a unifying framework to study expressivity and information capacity of neural networks for a broad range of neural network architectures.
Abstract: We propose an algebraic geometric framework to study the expressivity of piecewise linear activation neural networks. A particular quantity of neural networks that has been actively studied is the number of linear regions, which gives a quantification of the information capacity of the architecture. To study and evaluate information capacity and expressivity, we work in the setting of tropical geometry---a combinatorial and polyhedral variant of algebraic geometry---where there are known connections between tropical rational maps and feedforward neural networks. Our work builds on and expands this connection to capitalize on the rich theory of tropical geometry to characterize and study various architectural aspects of neural networks. Our contributions are threefold: we provide a novel tropical geometric approach to selecting sampling domains among linear regions; an algebraic result allowing for a guided restriction of the sampling domain for network architectures with symmetries; and a new open source OSCAR library to analyze neural networks symbolically using their tropical representations, where we present a new algorithm that computes the exact number of their linear regions. We provide a comprehensive set of proof-of-concept numerical experiments demonstrating the breadth of neural network architectures to which tropical geometric theory can be applied to reveal insights on expressivity characteristics of a network. Our work provides the foundations for the adaptation of both theory and existing software from computational tropical geometry and symbolic computation to neural networks and deep learning.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12294
Loading