Stabilizing the Kumaraswamy Distribution

26 Sept 2024 (modified: 02 Dec 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Latent variable models, Stochastic variational inference, Kumaraswamy distribution, Bounded interval distributions, Reparameterization trick, Contextual multi-armed bandits, Thompson Sampling
TL;DR: We resolve instabilities in the Kumaraswamy distribution to power scalable latent variable models for important large-scale ML tasks.
Abstract: Large-scale latent variable models require expressive continuous distributions that support efficient sampling and low-variance differentiation, achievable through the reparameterization trick. The Kumaraswamy (KS) distribution is both expressive and supports the reparameterization trick with a simple closed-form inverse CDF. Yet, its adoption remains limited. We identify and resolve numerical instabilities in the inverse CDF and log-pdf, exposing issues in libraries like PyTorch and TensorFlow. We then introduce simple and scalable latent variable models to improve exploration-exploitation trade-offs in contextual multi-armed bandits and enhance uncertainty quantification for link prediction with graph neural networks. We find these models to be most performant when paired with the stable KS. Our results support the stabilized KS distribution as a core component in scalable variational models for bounded latent variables.
Supplementary Material: zip
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 8118
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview