EmoGrowth: Incremental Multi-label Emotion Decoding with Augmented Emotional Relation Graph

23 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: Emotion recognition, Affective computing, Neural decoding,Class incremental learning,Multi-label learning
Abstract: Emotion recognition systems face significant challenges in real-world applications, where novel emotion categories continually emerge and multiple emotions often co-occur. This paper introduces multi-label fine-grained class incremental emotion decoding, which aims to develop models capable of incrementally learning new emotion categories while maintaining the ability to recognize multiple concurrent emotions. We propose an Augmented Emotional Semantics Learning (AESL) framework to address two critical challenges: past- and future-missing partial label problems. AESL incorporates an augmented Emotional Relation Graph (ERG) for reliable soft label generation and affective dimension-based knowledge distillation for future-aware feature learning. We evaluate our approach on three datasets spanning brain activity and multimedia domains, demonstrating its effectiveness in decoding up to 28 fine-grained emotion categories. Results show that AESL significantly outperforms existing methods while effectively mitigating catastrophic forgetting.
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2855
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview