Keywords: reinforcement learning, multimodal policies, diversity
TL;DR: We introduce an RL algorithm leveraging reparameterization and distance-based diversity regularization to train intractable multimodal policies for diversity-critical tasks.
Abstract: Traditional continuous deep reinforcement learning (RL) algorithms employ deterministic or unimodal Gaussian actors, which cannot express complex multimodal decision distributions. This limitation can hinder their performance in diversity-critical scenarios. There have been some attempts to design online multimodal RL algorithms based on diffusion or amortized actors. However, these actors are intractable, making existing methods struggle with balancing performance, decision diversity, and efficiency simultaneously. To overcome this challenge, we first reformulate existing intractable multimodal actors within a unified framework, and prove that they can be directly optimized by policy gradient via reparameterization. Then, we propose a distance-based diversity regularization that does not explicitly require decision probabilities. We identify two diversity-critical domains, namely multi-goal achieving and generative RL, to demonstrate the advantages of multimodal policies and our method, particularly in terms of few-shot robustness. In conventional MuJoCo benchmarks, our algorithm also shows competitive performance. Moreover, our experiments highlight that the amortized actor is a promising policy model class with strong multimodal expressivity and high performance.
Supplementary Material: zip
Primary Area: Reinforcement learning (e.g., decision and control, planning, hierarchical RL, robotics)
Submission Number: 12302
Loading