Tackling Feature and Sample Heterogeneity in Decentralized Multi-Task Learning: A Sheaf-Theoretic Approach
Keywords: federated multi-task learning, decentralized learning, communication-efficient, Sheaf theory
Abstract: Federated multi-task learning (FMTL) aims to simultaneously learn multiple related tasks across clients without sharing sensitive raw data. However, in the decentralized setting, existing FMTL frameworks are limited in their ability to capture complex task relationships and handle feature and sample heterogeneity across clients. To address these challenges, we introduce a novel sheaf-theoretic-based approach for FMTL. By representing client relationships using cellular sheaves, our framework can flexibly model interactions between heterogeneous client models. We formulate the sheaf-based FMTL optimization problem using sheaf Laplacian regularization and propose the Sheaf-FMTL algorithm to solve it. We show that the proposed framework provides a unified view encompassing many existing federated learning (FL) and FMTL approaches. Furthermore, we prove that our proposed algorithm, Sheaf-FMTL, achieves a sublinear convergence rate in line with state-of-the-art decentralized FMTL algorithms. Extensive experiments demonstrate that Sheaf-FMTL exhibits communication savings by sending significantly fewer bits compared to decentralized FMTL baselines.
Supplementary Material: zip
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6682
Loading