Keywords: Prototype learning, optimal transport, recommendation
Abstract: Accurately predicting user watch-time is crucial for enhancing user stickiness and retention in video recommendation systems. Existing watch-time prediction approaches typically involve transformations of watch-time labels for prediction and subsequent reversal, ignoring both the natural distribution properties of label and the \textit{instance representation confusion} that results in inaccurate predictions.
In this paper, we propose ProWTP, a two-stage method combining prototype learning and optimal transport for watch-time regression prediction, suitable for any deep recommendation model. The core idea of ProWTP is to align label distribution with instance representation distribution to calibrate the instance space, thereby improving prediction accuracy. Specifically, we observe that the watch-ratio (the ratio of watch-time to video duration) within the same duration bucket exhibits a multimodal distribution. To facilitate incorporation into models, we use a hierarchical vector quantised variational autoencoder (HVQ-VAE) to convert the continuous label distribution into a high-dimensional discrete distribution, serving as credible prototypes for calibrations. Based on this, ProWTP views the alignment between prototypes and instance representations as a Semi-relaxed Unbalanced Optimal Transport (SUOT) problem, where the marginal constraints of prototypes are relaxed. And the corresponding optimization problem is reformulated as a weighted Lasso problem for solution. Moreover, ProWTP introduces the assignment and compactness losses to encourage instances to cluster closely around their respective prototypes, thereby enhancing the prototype-level distinguishability. Finally, we conducted extensive offline experiments on two industrial datasets, demonstrating our consistent superiority in real-world application.
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7257
Loading