Recent Link Classification on Temporal Graphs Using Profile Builder

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: temporal graph learning, recent link classification
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The performance of Temporal Graph Learning (TGL) methods are typically evaluated on the future link prediction task, i.e., whether two nodes will get connected and dynamic node classification task, i.e., whether a node's class will change. Comparatively, recent link classification is investigated much less even though it exists in many industrial settings. In this work, we first formalize recent link classification on temporal graphs as a benchmark downstream task and introduce corresponding benchmark datasets. Secondly, we evaluate the performance of state-of-the-art methods with a statistically meaningful metric Matthews Correlation Coefficient, which is more robust to imbalanced datasets, in addition to the commonly used average precision and area under the curve, and propose several design principles for tailoring models to specific requirements of the task and the dataset. We explore modifications on message aggregation schema, readout layer and time encoding strategy which obtain significant improvement on benchmark datasets. Finally, we propose an architecture that we call Graph Profiler, which is capable of encoding previous events' class information on source and destination nodes. The experiments show that our proposed model achieves an improved Matthews Correlation Coefficient on most cases under interest. We believe the introduction of recent link classification as a benchmark task for temporal graph learning will be useful for the evaluation of prospective methods within the field.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7988
Loading