Learning Theory for Kernel Bilevel Optimization

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: bilevel optimization, kernel methods, learning theory, empirical process theory, U-statistic, generalization error bounds
TL;DR: We provide generalization error bounds for bilevel optimization problems where the inner objective is minimized over a reproducing kernel Hilbert space.
Abstract: Bilevel optimization has emerged as a technique for addressing a wide range of machine learning problems that involve an outer objective implicitly determined by the minimizer of an inner problem. While prior works have primarily focused on the parametric setting, a learning-theoretic foundation for bilevel optimization in the nonparametric case remains relatively unexplored. In this paper, we take a first step toward bridging this gap by studying Kernel Bilevel Optimization (KBO), where the inner objective is optimized over a reproducing kernel Hilbert space. This setting enables rich function approximation while providing a foundation for rigorous theoretical analysis. In this context, we derive novel finite-sample generalization bounds for KBO, leveraging tools from empirical process theory. These bounds further allow us to assess the statistical accuracy of gradient-based methods applied to the empirical discretization of KBO. We numerically illustrate our theoretical findings on a synthetic instrumental variable regression task.
Primary Area: Theory (e.g., control theory, learning theory, algorithmic game theory)
Submission Number: 11898
Loading