Keywords: implicit differentiation, equilibrium propagation, bilevel optimization, hopfield networks, analog computing, hardware-aware training, backprop, energy-based models, physical learning
TL;DR: We extend Equilibrium Propagation (EP) to a novel hardware-realistic model which comprises feedforward and energy-based blocks, resulting in chaining backprop and EP gradients backward through these blocks and a new SOTA performance on ImageNet32
Abstract: Power efficiency is plateauing in the standard digital electronics realm such that new hardware, models, and algorithms are needed to reduce the costs of AI training. The combination of energy-based analog circuits and the Equilibrium Propagation (EP) algorithm constitutes a compelling alternative compute paradigm for gradient-based optimization of neural nets. Existing analog hardware accelerators, however, typically incorporate digital circuitry to sustain auxiliary non-weight-stationary operations, mitigate analog device imperfections, and leverage existing digital platforms. Such heterogeneous hardware lacks a supporting theoretical framework. In this work, we introduce \emph{Feedforward-tied Energy-based Models} (ff-EBMs), a hybrid model comprised of feedforward and energy-based blocks housed on digital and analog circuits. We derive a novel algorithm to compute gradients end-to-end in ff-EBMs by backpropagating and ``eq-propagating'' through feedforward and energy-based parts respectively, enabling EP to be applied flexibly on realistic architectures. We experimentally demonstrate the effectiveness of this approach on ff-EBMs using Deep Hopfield Networks (DHNs) as energy-based blocks, and show that a standard DHN can be arbitrarily split into any uniform size while maintaining or improving performance with increases in simulation speed of up to four times. We then train ff-EBMs on ImageNet32 where we establish a new state-of-the-art performance for the EP literature (46 top-1 \%). Our approach offers a principled, scalable, and incremental roadmap for the gradual integration of self-trainable analog computational primitives into existing digital accelerators.
Primary Area: Machine learning for other sciences and fields
Submission Number: 11622
Loading