Information Plane Analysis for Dropout Neural NetworksDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: information plane, deep learning, mutual information, dropout, continuous distributions
TL;DR: Information plane analysis is a promising tool for neural networks analysis, for which mutual information can be measured more reliable with continuous dropout
Abstract: The information-theoretic framework promises to explain the predictive power of neural networks. In particular, the information plane analysis, which measures mutual information (MI) between input and representation as well as representation and output, should give rich insights into the training process. This approach, however, was shown to strongly depend on the choice of estimator of the MI. The problem is amplified for deterministic networks if the MI between input and representation is infinite. Thus, the estimated values are defined by the different approaches for estimation, but do not adequately represent the training process from an information-theoretic perspective. In this work, we show that dropout with continuously distributed noise ensures that MI is finite. We demonstrate in a range of experiments that this enables a meaningful information plane analysis for a class of dropout neural networks that is widely used in practice.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
12 Replies