Quantum sequential scattering model for quantum state learning

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: quantum neural networks, quantum state learning, quantum computing, quantum machine learning, quantum optimization
Abstract: Learning probability distribution is an essential framework in classical learning theory. As a counterpart, quantum state learning has spurred the exploration of quantum machine learning theory. However, as dimensionality increases, learning a high-dimensional unknown quantum state via conventional quantum neural network approaches remains challenging due to trainability issues. In this work, we devise the quantum sequential scattering model (QSSM), inspired by the classical diffusion model, to overcome this scalability issue. Training of our model could effectively circumvent the vanishing gradient problem to a large class of high-dimensional target states possessing polynomial-scaled Schmidt ranks. Theoretical analysis and numerical experiments provide evidence for our model's effectiveness in learning both physical and algorithmic meaningful quantum states and show an out-performance beating the conventional approaches in training speed and learning accuracy. Our work has indicated that an increasing entanglement, a property of quantum states, in the target states, necessitates a larger scaled model, which could reduce our model's learning performance and efficiency.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6939
Loading