Nonconvex Decentralized Stochastic Bilevel Optimization under Heavy-Tailed Noises

ICLR 2026 Conference Submission22700 Authors

20 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Decentralized bilevel optimization
Abstract: Existing decentralized stochastic optimization methods assume the lower-level loss function is strongly convex and the stochastic gradient noise has finite variance. These strong assumptions typically are not satisfied in real-world machine learning models. To address these limitations, we develop a novel decentralized stochastic bilevel optimization algorithm for the nonconvex bilevel optimization problem under heavy-tailed noises. Specifically, we develop a normalized stochastic variance-reduced bilevel gradient descent algorithm, which does not rely on any clipping operation. Moreover, we establish its convergence rate by innovatively bounding interdependent gradient sequences under heavy-tailed noises for nonconvex decentralized bilevel optimization problems. As far as we know, this is the first decentralized bilevel optimization algorithm with rigorous theoretical guarantees under heavy-tailed noises. The extensive experimental results confirm the effectiveness of our algorithm in handling heavy-tailed noises.
Primary Area: other topics in machine learning (i.e., none of the above)
Submission Number: 22700
Loading