SpectraNet: multivariate forecasting and imputation under distribution shifts and missing dataDownload PDF

Published: 01 Feb 2023, Last Modified: 14 Oct 2024Submitted to ICLR 2023Readers: Everyone
Keywords: time series, forecasting, missing values, deep-learning, interpolation, distribution shift
TL;DR: We propose a novel encoderless multivariate time-series forecasting with SoTA performance and robust to missing-data and distribution shifts
Abstract: In this work, we tackle two widespread challenges in real applications for time-series forecasting that have been largely understudied: distribution shifts and missing data. We propose SpectraNet, a novel multivariate time-series forecasting model that dynamically infers a latent space spectral decomposition to capture current temporal dynamics and correlations on the recent observed history. A Convolution Neural Network maps the learned representation by sequentially mixing its components and refining the output. Our proposed approach can simultaneously produce forecasts and interpolate past observations and can, therefore, greatly simplify production systems by unifying imputation and forecasting tasks into a single model. SpectraNet achieves SoTA performance simultaneously on both tasks on five benchmark datasets, compared to forecasting and imputation models, with up to 92% fewer parameters and comparable training times. On settings with up to 80% missing data, SpectraNet has average performance improvements of almost 50% over the second-best alternative.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 3 code implementations](https://www.catalyzex.com/paper/spectranet-multivariate-forecasting-and/code)
11 Replies

Loading