Keywords: Graph Transformer, Sparse learning, Network flow, Optimization
TL;DR: We introduce Sparse Flow induced Attention to capture long range interactions effectively for Graph Transformer.
Abstract: Graph Transformers (GTs) have demonstrated superior performance compared to traditional message-passing graph neural networks in many studies, especially in processing graph data with long-range dependencies. However, GTs tend to suffer from weak inductive bias, overfitting and over-globalizing problems due to the dense attention. In this paper, we introduce SFi-attention, a novel attention mechanism designed to learn sparse pattern by minimizing an energy function based on network flows with $\ell_1$-norm regularization, to relieve those issues caused by dense attention. Furthermore, SFi-Former is accordingly devised which can leverage the sparse attention pattern of SFi-attention to generate sparse network flows beyond adjacency matrix of graph data. Specifically, SFi-Former aggregates features selectively from other nodes through flexible adaptation of the sparse attention, leading to a more robust model. We validate our SFi-Former on various graph datasets, especially those graph data exhibiting long-range dependencies. Experimental results show that our SFi-Former obtains competitive performance on GNN Benchmark datasets and SOTA performance on Long-Range Graph Benchmark (LRGB) datasets. Additionally, our model gives rise to smaller generalization gaps, which indicates that it is less prone to over-fitting.
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11020
Loading