A Physics Enforced Neural Network to Predict Polymer Melt Viscosity

Published: 08 Oct 2024, Last Modified: 03 Nov 2024AI4Mat-NeurIPS-2024EveryoneRevisionsBibTeXCC BY 4.0
Submission Track: Full Paper
Submission Category: AI-Guided Design
Keywords: Physics Enforced Machine Learning, Polymers, Additive Manufacturing
TL;DR: We propose a framework to enforce polymer physics into a neural network to enhance predictive capabilities for melt viscosity for different chemical and physical conditions.
Abstract: Achieving superior polymeric components through additive manufacturing (AM) relies on precise control of rheology. One key rheological property particularly relevant to AM is melt viscosity ($\eta$). Melt viscosity is influenced by polymer chemistry, molecular weight ($M_w$), polydispersity, induced shear rate ($\dot\gamma$), and processing temperature ($T$). The relationship of $\eta$ with $M_w$, $\dot\gamma$, and $T$ may be captured by parameterized equations. Several physical experiments are required to fit the parameters, so predicting $\eta$ of a new polymer material in unexplored physical domains is a laborious process. Here, we develop a Physics-Enforced Neural Network (PENN) model that predicts the empirical parameters and encodes the aforementioned equations to calculate $\eta$ as a function of polymer chemistry, $M_w$, polydispersity, $\dot\gamma$, and $T$. We benchmark our PENN against physics-unaware Artificial Neural Network (ANN) and Gaussian Process Regression (GPR) models. Finally, we demonstrate that the PENN offers superior values of $\eta$ when extrapolating to unseen values of $M_w$, $\dot\gamma$, and $T$ for sparsely seen polymers.
Submission Number: 60
Loading