3DSPA: A 3D Semantic Point Autoencoder for Evaluating Video Realism

ICLR 2026 Conference Submission22265 Authors

20 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: intuitive physics, cognition, point tracking, autoencoder, generative video modeling
Abstract: AI video generation is evolving rapidly. For video generators to be useful for applications ranging from robotics to film-making, they must consistently produce realistic videos. However, evaluating the realism of generated videos remains a largely manual process -- requiring human annotation or bespoke evaluation datasets which have restricted scope. Here we develop an automated evaluation framework for video realism which captures both semantics and coherent 3D structure and which does not require access to a reference video. Our method, 3DSPA, is a 3D semantic point autoencoder which integrates 3D point trajectories, depth cues, and DINOv2 semantic features into a unified representation for video evaluation. 3DSPA models how objects move and what is happening in the scene, enabling robust assessments of realism, temporal consistency, and physical plausibility. Experiments show that 3DSPA reliably identifies videos which violate physical laws, is more sensitive to motion artifacts, and aligns more closely with human judgments of video quality and realism across multiple datasets. Our results demonstrate that enriching trajectory-based representations with 3D semantics offers a stronger foundation for benchmarking generative video models, and implicitly captures physical rule violations.
Primary Area: datasets and benchmarks
Submission Number: 22265
Loading