Adversarial Imitation Learning with PreferencesDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 posterReaders: Everyone
Keywords: preference learning, learning from demonstration, adversarial imitation learning
TL;DR: We extend Adversarial Imitation Learning to simultaneously utilize both demonstrations and preferences.
Abstract: Designing an accurate and explainable reward function for many Reinforcement Learning tasks is a cumbersome and tedious process. Instead, learning policies directly from the feedback of human teachers naturally integrates human domain knowledge into the policy optimization process. However, different feedback modalities, such as demonstrations and preferences, provide distinct benefits and disadvantages. For example, demonstrations convey a lot of information about the task but are often hard or costly to obtain from real experts while preferences typically contain less information but are in most cases cheap to generate. However, existing methods centered around human feedback mostly focus on a single teaching modality, causing them to miss out on important training data while making them less intuitive to use. In this paper we propose a novel method for policy learning that incorporates two different feedback types, namely \emph{demonstrations} and \emph{preferences}. To this end, we make use of the connection between discriminator training and density ratio estimation to incorporate preferences into the popular Adversarial Imitation Learning paradigm. This insight allows us to express loss functions over both demonstrations and preferences in a unified framework. Besides expert demonstrations, we are also able to learn from imperfect ones and combine them with preferences to achieve improved task performance. We experimentally validate the effectiveness of combining both preferences and demonstrations on common benchmarks and also show that our method can efficiently learn challenging robot manipulation tasks.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
11 Replies