Transductive Decoupled Variational Inference for Few-Shot Classification

Published: 08 Mar 2023, Last Modified: 08 Mar 2023Accepted by TMLREveryoneRevisionsBibTeX
Abstract: The versatility to learn from a handful of samples is the hallmark of human intelligence. Few-shot learning is an endeavour to transcend this capability down to machines. Inspired by the promise and power of probabilistic deep learning, we propose a novel variational inference network for few-shot classification (coined as TRIDENT) to decouple the representation of an image into semantic and label latent variables, and simultaneously infer them in an intertwined fashion. To induce task-awareness, as part of the inference mechanics of TRIDENT, we exploit information across both query and support images of a few-shot task using a novel built-in attention-based transductive feature extraction module (we call AttFEX). Our extensive experimental results corroborate the efficacy of TRIDENT and demonstrate that, using the simplest of backbones, it sets a new state-of-the-art in the most commonly adopted datasets miniImageNet and tieredImageNet (offering up to 4% and 5% improvements, respectively), as well as for the recent challenging cross-domain miniImagenet --> CUB scenario offering a significant margin (up to 20% improvement) beyond the best existing baselines.
Submission Length: Long submission (more than 12 pages of main content)
Assigned Action Editor: ~Francisco_J._R._Ruiz1
License: Creative Commons Attribution 4.0 International (CC BY 4.0)
Submission Number: 625