scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis in Brain

23 Sept 2023 (modified: 25 Mar 2024)ICLR 2024 Conference Withdrawn SubmissionEveryoneRevisionsBibTeX
Keywords: scRNA-seq, Hyena, foundation model
Abstract: Single-cell RNA sequencing (scRNA-seq) has made significant strides in unraveling the intricate cellular diversity within complex tissues. This is particularly critical in the brain, presenting a greater diversity of cell types than other tissue types, to gain a deeper understanding of brain function within various cellular contexts. However, analyzing scRNA-seq data remains a challenge due to inherent measurement noise stemming from dropout events and the limited utilization of extensive gene expression information. In this work, we introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain. Specifically, inspired by the recent Hyena operator, we design a novel Transformer architecture called singe-cell Hyena (scHyena) that is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator. This enables us to process full-length scRNA-seq data without losing any information from the raw data. In particular, our model learns generalizable features of cells and genes through pre-training scHyena using the full length of scRNA-seq data. We demonstrate the superior performance of scHyena compared to other benchmark methods in downstream tasks, including cell type classification and scRNA-seq imputation.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6586
Loading