Keywords: landing, manifold, fine-tuning, LoRA
TL;DR: We propose a retraction-free and penalty parameter-free algorithm, with the application for LoRA.
Abstract: Optimization over the Stiefel manifold has played a significant role in various machine learning tasks. Many existing algorithms either use the retraction operator to keep each iterate staying on the manifold, or solve an unconstrained quadratic penalized problem. The retraction operator in the former corresponds to orthonormalization of matrices and can be computationally costly for large-scale matrices. The latter approach usually equips with an unknown large penalty parameter. To address the above issues, we propose a retraction-free and penalty parameter-free algorithm, which lands on the manifold. Moreover, our convergence theory allows using constant step size, which improve the result of converging to a neighborhood in \citep{ablin2022fast}.
A key component of the analysis is the convex-like property of the quadratic penalty of the Stiefel manifold, which enables us to explicitly characterize the constant penalty parameter. As an application, we introduce a new algorithm, Manifold-LoRA, which employs the landing technique and a carefully designed step size strategy to accelerate low-rank adaptation (LoRA) in fine-tuning large language models. Numerical experiments on the benchmark datasets demonstrate the efficiency of our proposed method.
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 9522
Loading