Keywords: Inverse problems, unsupervised learning, dictionary learning, Deep Image Prior, Plug and Play
Abstract: Linear inverse problems consist in recovering a signal from its noisy observation in a lower dimensional space. Many popular resolution methods rely on data-driven algorithms that learn a prior from pairs of signals and observations to overcome the loss of information. However, these approaches are difficult, if not impossible, to adapt to unsupervised contexts -- where no ground truth data are available -- due to the need for learning from clean signals. This paper studies situations that do or do not allow learning a prior in unsupervised inverse problems. First, we focus on dictionary learning and point out that recovering the dictionary is unfeasible without constraints when the signal is observed through only one measurement operator. It can, however, be learned with multiple operators, given that they are diverse enough to span the whole signal space. Then, we study methods where weak priors are made available either through optimization constraints or deep learning architectures. We empirically emphasize that they perform better than hand-crafted priors only if they are adapted to the inverse problem.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Supplementary Material: zip
12 Replies
Loading