Cycle-Consistent Learning for Joint Layout-to-Image Generation and Object Detection

16 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Generation, Detection, Cycle-consistent, Diffusion
Abstract: In this paper, we propose a generation-detection cycle consistent (GDCC) learning framework that jointly optimizes both layout-to-image (L2I) generation and object detection (OD) tasks in an end-to-end manner. The key of GDCC lies in the inherent duality between the two tasks, where L2I takes all object boxes and labels as input conditions to generate images, and OD maps images back to these layout conditions. Specifically, in GDCC, L2I generation is guided by a layout translation cycle loss, ensuring that the layouts used to generate images align with those predicted from the synthesized images. Similarly, OD benefits from an image translation cycle loss, which enforces consistency between the synthesized images fed into the detector and those generated from predicted layouts. While current L2I and OD tasks benefit from large-scale annotated layout-image pairs, our GDCC enables more efficient use of unpaired layout data, thereby further enhancing data efficiency. It is worth noting that our GDCC framework is computationally efficient thanks to the perturbative single-step sampling strategy and a priority timestep re-sampling strategy during training, while maintaining the same inference cost as the original L2I and OD models. Extensive experiments demonstrate that GDCC significantly improves the controllability of diffusion models and the accuracy of object detectors.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1087
Loading