Quality-Aware Decoding: Unifying Quality Estimation and Decoding

ACL ARR 2025 February Submission1118 Authors

12 Feb 2025 (modified: 09 May 2025)ACL ARR 2025 February SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Quality Estimation (QE) models for Neural Machine Translation (NMT) predict the quality of the hypothesis without having access to the reference. An emerging research direction in NMT involves the use of QE models, which have demonstrated high correlations with human judgment and can enhance translations through Quality-Aware Decoding. Although several approaches have been proposed based on sampling multiple candidate translations and picking the best candidate, none have integrated these models directly into the decoding process. In this paper, we address this by proposing a novel token-level QE model capable of reliably scoring partial translations. We build a uni-directional QE model for this, as decoder models are inherently trained and efficient on partial sequences. We then present a decoding strategy that integrates the QE model for Quality-Aware decoding and demonstrate that the translation quality improves when compared to the N-best list re-ranking with state-of-the-art QE models (up to $1.39$ XCOMET-XXL $\uparrow$). Finally, we show that our approach provides significant benefits in document translation tasks, where the quality of N-best lists is typically suboptimal\footnote{We will release the code under \href{https://www.apache.org/licenses/LICENSE-2.0}{Apache License 2.0}}.
Paper Type: Long
Research Area: Machine Translation
Research Area Keywords: Quality-Aware Decoding, Machine Translation, Quality Estimation
Contribution Types: NLP engineering experiment
Languages Studied: English, German, Chinese
Submission Number: 1118
Loading