A Subspace Correction Method for ReLU Neural Networks for Solving PDEsDownload PDF

22 Sept 2022 (modified: 13 Feb 2023)ICLR 2023 Conference Withdrawn SubmissionReaders: Everyone
Keywords: ReLU neural network, Subspace correction method, Training algorithm, Function approximation, Partial differential equation
TL;DR: We propose a novel algorithm called Neuron-wise Parallel Subspace Correction Method for training ReLU neural networks for solving partial differential equations.
Abstract: In this paper, we propose a novel algorithm called Neuron-wise Parallel Subspace Correction Method (NPSC) for training ReLU neural networks for numerical solution of partial differential equations (PDEs). Despite of extremely extensive research activities in applying neural networks for numerical PDEs, there is still a serious lack of training algorithms that can be used to obtain approximation with adequate accuracy. Based on recent results on the spectral properties of linear layers and landscape analysis for single neuron problems, we develop a special type of subspace correction method that deals with the linear layer and each neuron in the nonlinear layer separately. An optimal preconditioner that resolves the ill-conditioning of the linear layer is presented, so that the linear layer is trained in a uniform number of iterations with respect to the number of neurons. In each single neuron problem, a good local minimum is found by a superlinearly convergent algorithm, avoiding regions where the loss function is flat. Performance of the proposed method is demonstrated through numerical experiments for function approximation problems and PDEs.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Machine Learning for Sciences (eg biology, physics, health sciences, social sciences, climate/sustainability )
Supplementary Material: zip
10 Replies

Loading