Decongestion by Representation: Learning to Improve Economic Welfare in Marketplaces

Published: 16 Jan 2024, Last Modified: 14 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: congestion, decongestion, online marketplaces, learning in economic settings, efficient allocation
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Online marketplaces suffer from congestion---when many users are interested in the same indivisible goods; we propose that platforms decongest by appropriately *representing* items, and propose a differentiable learning framework for doing so.
Abstract: Congestion is a common failure mode of markets, where consumers compete inefficiently on the same subset of goods (e.g., chasing the same small set of properties on a vacation rental platform). The typical economic story is that prices decongest by balancing supply and demand. But in modern online marketplaces, prices are typically set in a decentralized way by sellers, and the information about items is inevitably partial. The power of a platform is limited to controlling *representations*---the subset of information about items presented by default to users. This motivates the present study of *decongestion by representation*, where a platform seeks to learn representations that reduce congestion and thus improve social welfare. The technical challenge is twofold: relying only on revealed preferences from the choices of consumers, rather than true preferences; and the combinatorial problem associated with representations that determine the features to reveal in the default view. We tackle both challenges by proposing a *differentiable proxy of welfare* that can be trained end-to-end on consumer choice data. We develop sufficient conditions for when decongestion promotes welfare, and present the results of extensive experiments on both synthetic and real data that demonstrate the utility of our approach.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: societal considerations including fairness, safety, privacy
Submission Number: 2519
Loading