Keywords: MLLMs
TL;DR: We introduce TPRU, a large-scale dataset for training and evaluating sequential image understanding in MLLMs, and use it to train a model that outperforms GPT-4o on temporal reasoning tasks.
Abstract: Multimodal Large Language Models (MLLMs), particularly smaller, deployable variants, exhibit a critical deficiency in understanding temporal and procedural visual data, a bottleneck hindering their application in real-world embodied AI. This gap is largely caused by a systemic failure in training paradigms, which lack large-scale, procedurally coherent data. To address this problem, we introduce TPRU, a large-scale dataset sourced from diverse embodied scenarios such as robotic manipulation and GUI navigation. TPRU is systematically designed to cultivate temporal reasoning through three complementary tasks: Temporal Reordering, Next-Frame Prediction, and Previous-Frame Review. A key feature is the inclusion of challenging negative samples, compelling models to transition from passive observation to active, cross-modal validation. We leverage TPRU with a reinforcement learning (RL) fine-tuning methodology, specifically targeting the enhancement of resource-efficient models. Experiments show our approach yields dramatic gains: on our manually curated TPRU-Test, the accuracy of TPRU-7B soars from 50.33\% to 75.70\%, a state-of-the-art result that significantly outperforms vastly larger baselines, including GPT-4o. Crucially, these capabilities generalize effectively, demonstrating substantial improvements on established benchmarks. We will release our dataset and models to the community.
Primary Area: datasets and benchmarks
Submission Number: 9123
Loading