Understanding Heterophily for Graph Neural Networks

23 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: learning on graphs and other geometries & topologies
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Graph Neural Network; Networks with Heterophily; Over-smoothing
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Graphs with heterophily have been regarded as challenging scenarios for Graph Neural Networks (GNNs), where nodes are connected with dissimilar neighbors through various patterns. In this paper, we present theoretical understandings of the impacts of different heterophily patterns for GNNs by incorporating the graph convolution (GC) operations into fully connected networks via the proposed Heterophilous Stochastic Block Models (HSBM), a general random graph model that can accommodate diverse heterophily patterns. Firstly, we show that by applying a GC operation, the separability gains are determined by two factors, i.e., the Euclidean distance of the neighborhood distributions and $\sqrt{\mathbb{E}\left[\operatorname{deg}\right]}$, where $\mathbb{E}\left[\operatorname{deg}\right]$ is the averaged node degree. It reveals that the impact of heterophily on classification needs to be evaluated alongside the averaged node degree. Secondly, we show that the topological noise has a detrimental impact on separability, which is equivalent to degrading $\mathbb{E}\left[\operatorname{deg}\right]$. Finally, when applying multiple GC operations, we show that the separability gains are determined by the normalized distance of the $l$-powered neighborhood distributions. It indicates that the nodes still possess separability as $l$ goes to infinity in a wide range of regimes. Extensive experiments on both synthetic and real-world data verify the effectiveness of our theory.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 7775
Loading