Credal Wrapper of Model Averaging for Uncertainty Estimation in Classification

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 SpotlightEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Uncertainty Estimation, Model Averaging, Credal Stes, Probability Intervals, Out-of-Distribution Detection
Abstract: This paper presents an innovative approach, called credal wrapper, to formulating a credal set representation of model averaging for Bayesian neural networks (BNNs) and deep ensembles (DEs), capable of improving uncertainty estimation in classification tasks. Given a finite collection of single predictive distributions derived from BNNs or DEs, the proposed credal wrapper approach extracts an upper and a lower probability bound per class, acknowledging the epistemic uncertainty due to the availability of a limited amount of distributions. Such probability intervals over classes can be mapped on a convex set of probabilities (a credal set) from which, in turn, a unique prediction can be obtained using a transformation called intersection probability transformation. In this article, we conduct extensive experiments on several out-of-distribution (OOD) detection benchmarks, encompassing various dataset pairs (CIFAR10/100 vs SVHN/Tiny-ImageNet, CIFAR10 vs CIFAR10-C, CIFAR100 vs CIFAR100-C and ImageNet vs ImageNet-O) and using different network architectures (such as VGG16, ResNet-18/50, EfficientNet B2, and ViT Base). Compared to the BNN and DE baselines, the proposed credal wrapper method exhibits superior performance in uncertainty estimation and achieves a lower expected calibration error on corrupted data.
Supplementary Material: zip
Primary Area: probabilistic methods (Bayesian methods, variational inference, sampling, UQ, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5087
Loading