Synthetic Data Generation for Intersectional Fairness by Leveraging Hierarchical Group StructureDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: In this paper, we introduce a data augmentation approach specifically tailored to enhance intersectional fairness in classification tasks. Our method capitalizes on the hierarchical structure inherent to intersectionality, by viewing groups as intersections of their parent categories. This perspective allows us to augment data for smaller groups by learning a transformation function that combines data from these parent groups. Our empirical analysis, conducted on four diverse datasets including both text and images, reveals that classifiers trained with this data augmentation approach achieve superior intersectional fairness and are more robust to ``leveling down'' when compared to methods optimizing traditional group fairness metrics.
Paper Type: long
Research Area: Ethics, Bias, and Fairness
Contribution Types: NLP engineering experiment, Approaches to low-resource settings
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview