CRISP: Curriculum based Sequential neural decoders for Polar code familyDownload PDF

Published: 01 Feb 2023, Last Modified: 01 Oct 2023Submitted to ICLR 2023Readers: Everyone
Keywords: information theory, coding theory, wireless communication, polar codes, PAC codes, machine learning, deep learning
TL;DR: We introduce CRISP, a novel curriculum learning based neural decoder that attains near optimal reliability on the Polar code family in the short blocklength regime.
Abstract: Polar codes are widely used state-of-the-art codes for reliable communication that have recently been included in the $5^{\text{th}}$ generation wireless standards ($5$G). However, there still remains room for design of polar decoders that are both efficient and reliable in the short blocklength regime. Motivated by recent successes of data-driven channel decoders, we introduce a novel $\textbf{ C}$ur${\textbf{RI}}$culum based $\textbf{S}$equential neural decoder for $\textbf{P}$olar codes (CRISP). We design a principled curriculum, guided by information-theoretic insights, to train CRISP and show that it outperforms the successive-cancellation (SC) decoder and attains near-optimal reliability performance on the $\text{Polar}(16,32)$ and $\text{Polar}(22,64)$ codes. The choice of the proposed curriculum is critical in achieving the accuracy gains of CRISP, as we show by comparing against other curricula. More notably, CRISP can be readily extended to Polarization-Adjusted-Convolutional (PAC) codes, where existing SC decoders are significantly less reliable. To the best of our knowledge, CRISP constructs the first data-driven decoder for PAC codes and attains near-optimal performance on the $\text{PAC}(16,32)$ code.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](
11 Replies