Bidirectionally Self-Normalizing Neural NetworksDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Abstract: The problem of exploding and vanishing gradients has been a long-standing obstacle that hinders the effective training of neural networks. Despite various tricks and techniques that have been employed to alleviate the problem in practice, there still lacks satisfactory theories or provable solutions. In this paper, we address the problem from the perspective of high-dimensional probability theory. We provide a rigorous result that shows, under mild conditions, how the exploding/vanishing gradient problem disappears with high probability if the neural networks have sufficient width. Our main idea is to constrain both forward and backward signal propagation in a nonlinear neural network through a new class of activation functions, namely Gaussian-Poincaré normalized functions, and orthogonal weight matrices. Experiments on both synthetic and real-world data validate our theory and confirm its effectiveness on very deep neural networks when applied in practice.
One-sentence Summary: We theoretically solve the exploding and vanishing gradients problem in neural network training.
Supplementary Material: zip
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=75LKnm95Va
9 Replies

Loading