Abstract: For decades, classical point process models, such as the epidemic-type aftershock sequence (ETAS) model, have been widely used for forecasting the event times and locations of earthquakes. Recent advances have led to Neural Point Processes (NPPs), which promise greater flexibility and improvements over such classical models. However, the currently-used benchmark for NPPs does not represent an up-to-date challenge in the seismological community, since it contains data leakage and omits the largest earthquake sequence from the region. Additionally, initial earthquake forecasting benchmarks fail to compare NPPs with state-of-the-art forecasting models commonly used in seismology.To address these gaps, we introduce EarthquakeNPP: a benchmarking platform that curates and standardizes existing public resources: globally available earthquake catalogs, the ETAS model, and evaluation protocols from the seismology community. The datasets cover a range of small to large target regions within California, dating from 1971 to 2021, and include different methodologies for dataset generation. Benchmarking experiments, using both log-likelihood and generative evaluation metrics widely recognised in seismology, show that none of the five NPPs tested outperform ETAS. These findings suggest that current NPP implementations are not yet suitable for practical earthquake forecasting. Nonetheless, EarthquakeNPP provides a platform to foster future collaboration between the seismology and machine learning.
Submission Type: Regular submission (no more than 12 pages of main content)
Assigned Action Editor: ~Mark_Coates1
Submission Number: 6105
Loading