Latent Abstractions in Generative Diffusion Models

23 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: diffusion models, world modelling, information theory, nonlinear filtering
Abstract: In this work we study how diffusion-based generative models produce high-dimensional data, such as an image, by implicitly relying on a manifestation of a low-dimensional set of latent abstractions, that guide the generative process. We present a novel theoretical framework that extends Nonlinear Filtering (NLF), and that offers a unique perspective on SDE-based generative models. The development of our theory relies on NLF, including a novel formulation of the joint (state and measurement) dynamics, and an information-theoretic measure of the influence of the system state on the measurement process. According to our theory, diffusion models can be cast as a system of SDE, describing a non-linear filter in which the evolution of unobservable latent abstractions steers the dynamics of an observable measurement process (corresponding to the generative pathways). In addition, we present an empirical study to validate our theory and previous empirical results on the emergence of latent abstractions at different stages of the generative process.
Primary Area: generative models
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3216
Loading