RetroDiff: Retrosynthesis as Multi-stage Distribution Interpolation

22 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Retrosynthesis, Diffusion Model
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Retrosynthesis poses a fundamental challenge in biopharmaceuticals, aiming to aid chemists in finding appropriate reactant molecules and synthetic pathways given determined product molecules. With the reactant and product represented as 2D graphs, retrosynthesis constitutes a conditional graph-to-graph generative task. Inspired by the recent advancements in discrete diffusion models for graph generation, we introduce RetroSynthesis Diffusion (RetroDiff), a novel diffusion-based method designed to address this problem. However, integrating a diffusion-based graph-to-graph framework while retaining essential chemical reaction template information presents a notable challenge. Our key innovation is to develop a multi-stage diffusion process. In this method, we decompose the retrosynthesis procedure to first sample external graph motifs from the dummy distribution given products and then generate the external bonds to connect the products and generated motifs. Interestingly, such a generation process is exactly the reverse of the widely adapted semi-template retrosynthesis procedure, i.e. from reaction center identification to synthon completion, which significantly reduces the error accumulation. Experimental results on the benchmark have demonstrated the superiority of our method over all other semi-template methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4613
Loading