Towards Fine-grained Molecular Graph-Text Pre-training

26 Sept 2024 (modified: 14 Jan 2025)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Molecular Representation Learning, Graph Neural Network
Abstract: Understanding molecular structure and related knowledge is crucial for scientific research. Recent studies integrate molecular graphs with their textual descriptions to enhance molecular representation learning. However, they focus on the whole molecular graph and neglect frequently occurring subgraphs, known as motifs, which are essential for determining molecular properties. Without such fine-grained knowledge, these models struggle to generalize to unseen molecules and tasks that require motif-level insights. To bridge this gap, we propose FineMolTex, a novel Fine-grained Molecular graph-Text pre-training framework to jointly learn coarse-grained molecule-level knowledge and fine-grained motif-level knowledge. Specifically, FineMolTex consists of two pre-training tasks: a contrastive alignment task for coarse-grained matching and a masked multi-modal modeling task for fine-grained matching. In particular, the latter predicts the labels of masked motifs and words, leveraging insights from each other, thereby enabling FineMolTex to understand the fine-grained matching between motifs and words. Finally, we conduct extensive experiments across three downstream tasks, achieving up to 230% improvement in the text-based molecule editing task. Additionally, our case studies reveal that FineMolTex successfully captures fine-grained knowledge, potentially offering valuable insights for drug discovery and catalyst design.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5630
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview