Keywords: Embodied AI; World2Minecraft; 3D Semantic Occupancy Prediction; MinecraftOcc Dataset; Vision-Language Navigation
Abstract: Embodied intelligence requires high-fidelity simulation environments to support perception and decision-making, yet existing platforms often suffer from data contamination and limited flexibility. To mitigate this, we propose World2Minecraft to convert real-world scenes into structured Minecraft environments based on 3D semantic occupancy prediction. In the reconstructed scenes, we can effortlessly perform downstream tasks such as Vision-Language Navigation(VLN). However, we observe that reconstruction quality heavily depends on accurate occupancy prediction, which remains limited by data scarcity and poor generalization in existing models. We introduce a low-cost, automated, and scalable data acquisition pipeline for creating customized occupancy datasets, and demonstrate its effectiveness through MinecraftOcc, a large-scale dataset featuring 100,165 images from 156 richly detailed indoor scenes. Extensive experiments show that our dataset provides a critical complement to existing datasets and poses a significant challenge to current SOTA methods. These findings contribute to improving occupancy prediction and highlight the value of World2Minecraft in providing a customizable and editable platform for personalized embodied AI research. We will publicly release the dataset and the complete generation framework to ensure reproducibility and encourage future work.
Supplementary Material: zip
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 3885
Loading