Faster proximal algorithms for matrix optimization using Jacobi-based eigenvalue methodsDownload PDF

Published: 09 Nov 2021, Last Modified: 05 May 2023NeurIPS 2021 PosterReaders: Everyone
Keywords: proximal splitting algorithms, matrix optimization, semidefinite programming, eigenvalue computation, Jacobi's method for eigenvalue decomposition
Abstract: We consider proximal splitting algorithms for convex optimization problems over matrices. A significant computational bottleneck in many of these algorithms is the need to compute a full eigenvalue or singular value decomposition at each iteration for the evaluation of a proximal operator. In this paper we propose to use an old and surprisingly simple method due to Jacobi to compute these eigenvalue and singular value decompositions, and we demonstrate that it can lead to substantial gains in terms of computation time compared to standard approaches. We rely on three essential properties of this method: (a) its ability to exploit an approximate decomposition as an initial point, which in the case of iterative optimization algorithms can be obtained from the previous iterate; (b) its parallel nature which makes it a great fit for hardware accelerators such as GPUs, now common in machine learning, and (c) its simple termination criterion which allows us to trade-off accuracy with computation time. We demonstrate the efficacy of this approach on a variety of algorithms and problems, and show that, on a GPU, we can obtain 5 to 10x speed-ups in the evaluation of proximal operators compared to standard CPU or GPU linear algebra routines. Our findings are supported by new theoretical results providing guarantees on the approximation quality of proximal operators obtained using approximate eigenvalue or singular value decompositions.
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
TL;DR: We use a method due to Jacobi to obtain 5 to 10x speedups in the computation of proximal operators of matrix functions.
Supplementary Material: pdf
10 Replies